The total weight acting on the chain is the sum of the weight of the body and the weight of the chain itself.
1. Weight of the body: \( 200 \, \text{N} \)
2. Weight of the chain: \( 10 \times 10 = 100 \, \text{N} \)
Thus, the total weight is:
\[\text{Total weight} = 200 + 100 = 300 \, \text{N}\]
Since the chain-block system is in equilibrium, the tension \( T \) in the chain must balance the total weight:
\[T = 300 \, \text{N}\]
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).