The total weight acting on the chain is the sum of the weight of the body and the weight of the chain itself.
1. Weight of the body: \( 200 \, \text{N} \)
2. Weight of the chain: \( 10 \times 10 = 100 \, \text{N} \)
Thus, the total weight is:
\[\text{Total weight} = 200 + 100 = 300 \, \text{N}\]
Since the chain-block system is in equilibrium, the tension \( T \) in the chain must balance the total weight:
\[T = 300 \, \text{N}\]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32