A sportsman runs around a circular track of radius $ r $ such that he traverses the path ABAB. The distance travelled and displacement, respectively, are:
A body of mass $100 \;g$ is moving in a circular path of radius $2\; m$ on a vertical plane as shown in the figure. The velocity of the body at point A is $10 m/s.$ The ratio of its kinetic energies at point B and C is: (Take acceleration due to gravity as $10 m/s^2$)
Derive an expression for maximum speed of a vehicle moving along a horizontal circular track.
Let \( a \) be an integer multiple of 8. If \( S \) is the set of all possible values of \( a \) such that the line \( 6x + 8y + a = 0 \) intersects the circle \( x^2 + y^2 - 4x - 6y + 9 = 0 \) at two distinct points, then the number of elements in \( S \) is:
If the ratio of the terms equidistant from the middle term in the expansion of \((1 + x)^{12}\) is \(\frac{1}{256}\), then the sum of all the terms of the expansion \((1 + x)^{12}\) is:
A 3 kg block is connected as shown in the figure. Spring constants of two springs \( K_1 \) and \( K_2 \) are 50 Nm\(^{-1}\) and 150 Nm\(^{-1}\) respectively. The block is released from rest with the springs unstretched. The acceleration of the block in its lowest position is ( \( g = 10 \) ms\(^{-2}\) )