Step 1: Find total mechanical energy using data at 5 m.
\[
\text{Total Energy} = \text{K.E.} + \text{P.E.}
\]
At 5 m, P.E. is given as \( 100~\text{J} \).
Let total energy be \( E \), then:
\[
E = K.E._{5\text{m}} + 100~\text{J}
\]
Step 2: Use velocity to find total mechanical energy.
\[
\text{Initial K.E.} = \frac{1}{2}mv^2 = \frac{1}{2} \times m \times (20)^2 = 200m
\]
Let mass be \( m \), and use P.E. at 5 m:
\[
P.E. = mgh = m \times 10 \times 5 = 50m \Rightarrow 50m = 100 \Rightarrow m = 2~\text{kg}
\]
So total mechanical energy:
\[
E = 200 \times 2 = 400~\text{J}
\]
Step 3: Find P.E. at 10 m:
\[
P.E. = mgh = 2 \times 10 \times 10 = 200~\text{J}
\]
Step 4: Use conservation of energy to find K.E. at 10 m:
\[
K.E. = E - P.E. = 400 - 200 = 200~\text{J}
\]
% Final Answer
\[
\boxed{200~\text{J}}
\]