A two-level quantum system has energy eigenvalues
\( E_1 \) and \( E_2 \). A perturbing potential
\( H' = \lambda \Delta \sigma_x \) is introduced, where
\( \Delta \) is a constant having dimensions of energy,
\( \lambda \) is a small dimensionless parameter, and
\( \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).
The magnitudes of the first and the second order corrections to
\( E_1 \) due to \( H' \), respectively, are:
Consider a two-level system with energy states \( +\epsilon \) and \( -\epsilon \). The number of particles at \( +\epsilon \) level is \( N+ \) and the number of particles at \( -\epsilon \) level is \( N- \). The total energy of the system is \( E \) and the total number of particles is \( N = N+ + N- \). In the thermodynamic limit, the inverse of the absolute temperature of the system is:
(Given: \( \ln N! \approx N \ln N - N \))
Observe the following structure:
The formal charges on the atoms 1, 2, 3 respectively are:
Two statements are given below: Statement-I: The ratio of the molar volume of a gas to that of an ideal gas at constant temperature and pressure is called the compressibility factor.
Statement-II: The RMS velocity of a gas is directly proportional to the square root of \( T(K) \).
Given below are two statements: Statement-I: In the decomposition of potassium chlorate, Cl is reduced.
Statement-II: Reaction of Na with \( O_2 \) to form \( Na_2O \) is a redox reaction.
Observe the following reaction: $ 2A_2(g) + B_2(g) \xrightarrow{T(K)} 2A_2B(g) + 600 \text{ kJ} $. The standard enthalpy of formation $ (\Delta_f H^\circ) $ of $ A_2B(g) $ is: