A block (\(P\)) is rotating in contact with the vertical wall of a rotor as shown in figures A, B, C. The relation between angular velocities \( \omega_A, \omega_B, \omega_C \) so that the block does not slide down. (Given: \( R_A < R_B < R_C \), where \( R \) denotes radius)

If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: