Step 1: Assign probabilities
Let \( P(3) = P(5) = p \), so \( P(2) = P(4) = P(6) = 2p \).
As the total probability is 1: \[ P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \implies 9p = 1 \implies p = \frac{1}{9} \] Thus, \( P(6) = 2p = \frac{2}{9} \), and \( P(\text{Not getting six}) = 1 - P(6) = \frac{7}{9} \).
Step 2: Define the random variable \( X \)
Let \( X \) represent the number of sixes. The possible values of \( X \) are \( 0, 1, 2 \).
Step 3: Compute probabilities for \( X \)
\[ P(X = 0) = \left( \frac{7}{9} \right)^2 = \frac{49}{81}, \quad P(X = 1) = 2 \cdot \frac{2}{9} \cdot \frac{7}{9} = \frac{28}{81}, \quad P(X = 2) = \left( \frac{2}{9} \right)^2 = \frac{4}{81} \]
Step 4: Probability distribution of \( X \)
\[ \begin{array}{|c|c|} X & P(X) \\ \hline 0 & \frac{49}{81} \\ 1 & \frac{28}{81} \\ 2 & \frac{4}{81} \\ \end{array} \]
Step 5: Compute the mean of \( X \)
The mean is given by: \[ \mu = \sum_{i=1}^{3} X_i \cdot P(X_i) = 0 \cdot \frac{49}{81} + 1 \cdot \frac{28}{81} + 2 \cdot \frac{4}{81} = \frac{28}{81} + \frac{8}{81} = \frac{36}{81} = \frac{4}{9} \]
Step 6: Final result
The probability distribution of \( X \) is: \[ \begin{array}{|c|c|} X & P(X) \\ \hline 0 & \frac{49}{81} \\ 1 & \frac{28}{81} \\ 2 & \frac{4}{81} \\ \end{array} \] The mean of the distribution is \( \frac{4}{9} \).
A store has been selling calculators at Rs. 350 each. A market survey indicates that a reduction in price (\( p \)) of calculators increases the number of units (\( x \)) sold. The relation between the price and quantity sold is given by the demand function:
\[ p = 450 - \frac{x}{2}. \]
Based on the above information, answer the following questions:
Rohit, Jaspreet, and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit's selection is \( \frac{1}{5} \), Jaspreet's selection is \( \frac{1}{3} \), and Alia's selection is \( \frac{1}{4} \). The events of selection are independent of each other.
Based on the above information, answer the following questions:
An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions: