Step 1: Convert data.
\[
W_t = 3.0\ \text{tonne} = 3000\ \text{kg},\quad
v = 1.8\ \text{m/s},\quad
t = 3.0\ \text{min} = 180\ \text{s}.
\]
Acceleration:
\[
a = \frac{1.8}{180} = 0.01\ \text{m/s}^2.
\]
Step 2: Train resistance forces.
Frictional resistance:
\[
F_f = \mu W_t g = 0.06 \times 3000 \times 9.81 = 1765.8\ \text{N}.
\]
Gradient resistance:
\[
\frac{1}{20} = 0.05,\quad
F_g = 0.05 W_t g
= 0.05 \times 3000 \times 9.81
= 1471.5\ \text{N}.
\]
Acceleration force:
\[
F_a = W_t a = 3000(0.01) = 30\ \text{N}.
\]
Total pull required:
\[
F = F_f + F_g + F_a
= 1765.8 + 1471.5 + 30
= 3267.3\ \text{N}.
\]
Step 3: Adhesion force provided by locomotive.
If $W_L$ is locomotive weight in kg:
\[
F_{\text{adh}} = 0.2 \, W_L \, g.
\]
Set required pull = adhesion force:
\[
0.2 W_L g = 3267.3.
\]
\[
W_L = \frac{3267.3}{0.2 \times 9.81}
= 166.5\ \text{kg}.
\]
Convert to tonnes:
\[
W_L = 1665\ \text{kg} = 1.665\ \text{tonnes}.
\]
But a locomotive must also overcome its own rolling resistance:
\[
F_{\text{self}} = 0.06 W_L g.
\]
Solve simultaneously:
\[
3267.3 + 0.06 W_L g = 0.2 W_L g.
\]
\[
3267.3 = 0.14 W_L g.
\]
\[
W_L = \frac{3267.3}{0.14 \times 9.81}
= 3700\ \text{kg}
= 3.7\ \text{tonnes}.
\]
Rounded:
\[
\boxed{3.7\ \text{tonnes}}
\]