A bar of length \( L = 1 \, {m} \) is fixed at one end. Before heating its free end has a gap of \( \delta = 0.1 \, {mm} \) from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of \( 10^\circ {C} \). The coefficient of linear thermal expansion of the material is \( 20 \times 10^{-6} / \degree C \) and the Young’s modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.
The magnitude of the resulting axial stress on the bar is .......... MPa (in integer).
A massless cantilever beam, with a tip mass \( m \) of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length \( L = 1 \, {m} \), with a circular cross-section of diameter \( d = 20 \, {mm} \). The Young’s modulus of the beam material is 200 GPa.
The natural frequency of the spring-mass system is ............ Hz (rounded off to two decimal places).
A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm\(^2\), area moment of inertia of 7854 mm\(^4\), and a length \( L \) of 4 m. A point load \( P = 100 \, {N} \) acts at the center and an axial load \( Q = 20 \, {kN} \) acts through the centroidal axis as shown in the figure.
The magnitude of the offset between the neutral axis and the centroidal axis, at \( L/2 \) from the left, is ............ mm (rounded off to one decimal place).
A simply-supported beam, with a point load \( P = 150 \, {kN} \) at a distance of \( L/3 \) from the left end, is shown in the figure. The elastic-strain energy \( U \) of the beam is given by the following expression:
\[ U = \frac{2}{243} \frac{P^2 L^3}{EI}, \] where the section modulus, \( EI \), is \( 16.66 \times 10^5 \, {Nm}^2 \) and the length of the beam \( L \) is 1 m.
The deflection at the loading point is ............ mm (rounded off to two decimal places).
The figure shows the stress distribution across an internal surface of a rectangular beam of height 30 mm and depth 10 mm. The normal stress distribution is given by the expression \( \sigma_{xx} = 200y + 500 \, {N/mm}^2 \), where \( y \) is the distance in mm from the centroidal axis of the beam. Assume that there is no variation in the stress distribution along the z-direction.
In the figures given below, L and H indicate low and high pressure centers, respectively; PGF, CoF and CeF indicate Pressure Gradient Force, Coriolis Force and Centrifugal Force, respectively; \( V \) is Velocity. [The arrows indicate only the directions but not the magnitudes of the forces and velocity.]
Which of the following is/are the correct representation(s) of the directions of various forces and velocity in the gradient wind balance in the northern hemisphere?
Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, \( \rho \) is the density and \( \nabla \) the three-dimensional velocity vector of the fluid.]
[(i)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$
[(ii)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$
[(iii)] $\displaystyle \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$
[(iv)] $\displaystyle \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$
The vertical (depth) profiles for three parameters P1, P2, and P3 in the northern Indian Ocean are given in the figure below. The values along the x-axis are the normalized values of the parameters and y-axis is the depth (m).
Identify the parameters P1, P2, and P3 from the options given below.