In rolling without slipping, total energy of ball is the sum of its translational and rotational energy.
Kinetic energy of rotation
$K_{rot}=\frac{1}{2}I\omega^2=\frac{1}{2}MK^2\frac{v^2}{R^2}$
where $K$ is radius of gyration.
Kinetic energy of translation,
$K_{\text{trans}}=\frac{1}{2}Mv^2$
Thus, total energy
$E=K_{rot}+K_{\text{trans}}$
$=\frac{1}{2}MK^2\frac{V^2}{R^2}+\frac{1}{2}Mv^2$
$=\frac{1}{2}Mv^2\left(\frac{K62}{R^2}+1\right)$
$=\frac{1}{2}\frac{Mv^2}{R^2}(K^2+R^2)$
Hence $\frac{K_{rot}}{K_{trans}}=\frac{\frac{1}{2}MK^2\frac{v^2}{R^2}}{\frac{1}{2}\frac{Mv^2}{R^2}(K^2+R^2)}$
$=\frac{K^2}{K^2+R^2}$