Let the two balls meet after $t \,s$ at distance $x$ from the platform.
For the first ball
$u = 0, t = 18\, s, g = 10\, m/s^2$
Using $ h = ut+\frac{1}{2} gt^2$
$\therefore x = \frac{1}{2} \times 10 \times 18^2 \hspace30mm $...(i)
For the second ball
$ u = v, t = 12\, s, g = 10\, m/s^2$
Using $h = ut+\frac{1}{2} gt^2$
$\therefore x = v \times 12 + \frac{1}{2} \times 10 \times 12^2 \hspace15mm $...(ii)
From equations (i) and (ii), we get
$ \frac{1}{2} \times 10 \times 18^2 = 12v + \frac{1}{2} \times 10 \times (12)^2$
or $ \, \, 12v = \frac{1}{2} \times 10 \times [(18)^2 - (12)^2]$
$ = \frac{1}{2} \times 10 \times [(18+12) - (18-12)]$
$ 12v=\frac{1}{2} \times 10 \times 30 \times 6 $
or $ \, \, v = \frac{1 \times 10 \times 30 \times 6 }{2 \times12}=75\, m/s$