Let \( A, B, C \) work together for \( x \) days, then \( A, B \) continue alone for \( y \) more days.
Rates: \( A = \frac{1}{15}, B = \frac{1}{20}, C = \frac{1}{30} \)
Total work:
\[
x\left( \frac{1}{15} + \frac{1}{20} + \frac{1}{30} \right) + y\left( \frac{1}{15} + \frac{1}{20} \right) = 1
\]
LCM = 60:
\[
x\left( \frac{4 + 3 + 2}{60} \right) + y\left( \frac{4 + 3}{60} \right) = 1
\Rightarrow x\left( \frac{9}{60} \right) + y\left( \frac{7}{60} \right) = 1
\Rightarrow 9x + 7y = 60 \quad \text{(1)}
\]
Also: Payment based on work share. Let pay of C = \( c \), then \( B = c + 6000 \), and A = \( 18000 - B - C = 18000 - 2c - 6000 = 12000 - 2c \)
Work by C = \( x \cdot \frac{1}{30} = \frac{x}{30} \)
Work by B = \( x \cdot \frac{1}{20} + y \cdot \frac{1}{20} = \frac{x + y}{20} \)
Work by A = \( x \cdot \frac{1}{15} + y \cdot \frac{1}{15} = \frac{x + y}{15} \)
So,
\[
\frac{c}{18000} = \frac{x}{30}, \quad \frac{c + 6000}{18000} = \frac{x + y}{20}
\Rightarrow \frac{x}{30} = \frac{c}{18000} \Rightarrow c = 600x
\]
\[
\Rightarrow \frac{x + y}{20} = \frac{600x + 6000}{18000} = \frac{x + 10}{30}
\Rightarrow 3(x + y) = 2(x + 10) \Rightarrow 3x + 3y = 2x + 20 \Rightarrow x + 3y = 20 \quad \text{(2)}
\]
Solve (1) and (2):
From (2): \( x = 20 - 3y \)
Plug into (1):
\[
9(20 - 3y) + 7y = 60 \Rightarrow 180 - 27y + 7y = 60 \Rightarrow -20y = -120 \Rightarrow y = 6, x = 20 - 18 = \boxed{2}
\]
Total days A worked = \( x + y = 2 + 6 = \boxed{8} \)