$A$ and $B$ are identical point masses. $A$ is released as shown in the diagram at an angle $60^\circ$ from the vertical. Find $R$ if $B$ is able to reach point $C$ after elastic impact. 
A particle of mass \(m\) falls from rest through a resistive medium having resistive force \(F=-kv\), where \(v\) is the velocity of the particle and \(k\) is a constant. Which of the following graphs represents velocity \(v\) versus time \(t\)? 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 