Given:
Mass of stone, \( m = 4 \, \text{kg} \)
Speed, \( v = 12 \, \text{m/s} \)
Length of wire, \( L = 4 \, \text{m} \)
Diameter of wire, \( d = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)
Young's modulus, \( Y = 2 \times 10^{11} \, \text{N/m}^2 \)
Step 1: Calculate the tension \( T \) in the wire due to circular motion:
\[
T = \frac{m v^2}{r} = \frac{4 \times 12^2}{4} = \frac{4 \times 144}{4} = 144 \, \text{N}
\]
Step 2: Calculate the cross-sectional area \( A \) of the wire:
\[
A = \pi \left(\frac{d}{2}\right)^2 = \pi \left(1 \times 10^{-3}\right)^2 = \pi \times 10^{-6} \, \text{m}^2
\]
Step 3: Calculate the strain \( \varepsilon \) using Young's modulus formula:
\[
Y = \frac{\text{Stress}}{\text{Strain}} = \frac{T/A}{\varepsilon} \implies \varepsilon = \frac{T}{Y A}
\]
Step 4: Substitute values:
\[
\varepsilon = \frac{144}{2 \times 10^{11} \times \pi \times 10^{-6}} = \frac{144}{2 \times 10^{11} \times 3.1416 \times 10^{-6}} = \frac{144}{6.2832 \times 10^{5}} \approx 2.29 \times 10^{-4}
\]
Therefore, the strain in the wire is:
\[
\boxed{2.3 \times 10^{-4}}
\]