0.35 A
Capacitive Reactance
$$ X_C = \frac{1}{\omega C} = \frac{1}{2 \pi f C} $$
$$ X_C = \frac{1}{2 \times 3.14 \times 50 \times 10 \times 10^{-6}} = \frac{1000}{3.14} $$
$$ V_{rms} = 210 \ V $$
$$ i_{rms} = \frac{V_{rms}}{X_c} = \frac{210}{X_c} $$
Peak current \( = \sqrt{2} i_{rms} \)
$$ = \sqrt{2} \times \frac{210}{1000} \times 3.14 = 0.932 \simeq 0.93 \ A $$
The capacitive reactance is given by:
$$ X_C = \frac{1}{2\pi f C} $$
Given values:
$$ X_C = \frac{1}{2\pi (50) (10 \times 10^{-6})} $$
Solving:
$$ X_C = \frac{1}{3.14 \times 10^{-3}} $$
$$ X_C \approx 318.47 \, \Omega $$
The peak current is given by:
$$ I_0 = \frac{V_0}{X_C} $$
Where:
$$ V_0 = \sqrt{2} V_{\text{rms}} = \sqrt{2} (210) $$
$$ V_0 \approx 296.98 \text{ V} $$
Substituting values:
$$ I_0 = \frac{296.98}{318.47} $$
$$ I_0 \approx 0.93 \text{ A} $$
The peak current is approximately 0.93 A.
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is: