We are given the vertices \( A(1, 2, 1) \), \( B(2, 3, 2) \), \( C(3, 1, 3) \), and \( D(2, 1, 3) \) of a tetrahedron, and we are asked to find the cosine of the angle \( \theta \) between the faces \( ABC \) and \( ABD \).
Step 1: The angle \( \theta \) between two planes is given by the formula: \[ \cos \theta = \frac{n_1 \cdot n_2}{|n_1| |n_2|} \] where \( n_1 \) and \( n_2 \) are the normal vectors to the planes. For the face \( ABC \), the normal vector \( n_1 \) is the cross product of vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \), and for the face \( ABD \), the normal vector \( n_2 \) is the cross product of vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AD} \).
Step 2: First, find the vectors: \[ \overrightarrow{AB} = B - A = (2 - 1, 3 - 2, 2 - 1) = (1, 1, 1) \] \[ \overrightarrow{AC} = C - A = (3 - 1, 1 - 2, 3 - 1) = (2, -1, 2) \] \[ \overrightarrow{AD} = D - A = (2 - 1, 1 - 2, 3 - 1) = (1, -1, 2) \]
Step 3: Now, compute the cross products: For \( \overrightarrow{AB} \times \overrightarrow{AC} \): \[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
2 & -1 & 2 \end{vmatrix} = \hat{i}(1(2) - 1(-1)) - \hat{j}(1(2) - 1(2)) + \hat{k}(1(-1) - 1(2)) \] \[ = \hat{i}(2 + 1) - \hat{j}(2 - 2) + \hat{k}(-1 - 2) \] \[ = 3\hat{i} + 0\hat{j} - 3\hat{k} \] Thus, \( n_1 = (3, 0, -3) \). For \( \overrightarrow{AB} \times \overrightarrow{AD} \): \[ \overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
1 & -1 & 2 \end{vmatrix} = \hat{i}(1(2) - 1(-1)) - \hat{j}(1(2) - 1(1)) + \hat{k}(1(-1) - 1(1)) \] \[ = \hat{i}(2 + 1) - \hat{j}(2 - 1) + \hat{k}(-1 - 1) \] \[ = 3\hat{i} - \hat{j} - 2\hat{k} \] Thus, \( n_2 = (3, -1, -2) \).
Step 4: Now, calculate the dot product \( n_1 \cdot n_2 \): \[ n_1 \cdot n_2 = (3)(3) + (0)(-1) + (-3)(-2) = 9 + 0 + 6 = 15 \] Next, find the magnitudes of \( n_1 \) and \( n_2 \): \[ |n_1| = \sqrt{3^2 + 0^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] \[ |n_2| = \sqrt{3^2 + (-1)^2 + (-2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] Step 5: Now, calculate \( \cos \theta \): \[ \cos \theta = \frac{n_1 \cdot n_2}{|n_1| |n_2|} = \frac{15}{(3\sqrt{2})(\sqrt{14})} = \frac{15}{3\sqrt{28}} = \frac{5}{\sqrt{28}} = \frac{5}{2\sqrt{7}} \] Thus, the value of \( \cos \theta \) is \( \frac{5}{2\sqrt{7}} \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?