We are given the vertices \( A(1, 2, 1) \), \( B(2, 3, 2) \), \( C(3, 1, 3) \), and \( D(2, 1, 3) \) of a tetrahedron, and we are asked to find the cosine of the angle \( \theta \) between the faces \( ABC \) and \( ABD \).
Step 1: The angle \( \theta \) between two planes is given by the formula: \[ \cos \theta = \frac{n_1 \cdot n_2}{|n_1| |n_2|} \] where \( n_1 \) and \( n_2 \) are the normal vectors to the planes. For the face \( ABC \), the normal vector \( n_1 \) is the cross product of vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \), and for the face \( ABD \), the normal vector \( n_2 \) is the cross product of vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AD} \).
Step 2: First, find the vectors: \[ \overrightarrow{AB} = B - A = (2 - 1, 3 - 2, 2 - 1) = (1, 1, 1) \] \[ \overrightarrow{AC} = C - A = (3 - 1, 1 - 2, 3 - 1) = (2, -1, 2) \] \[ \overrightarrow{AD} = D - A = (2 - 1, 1 - 2, 3 - 1) = (1, -1, 2) \]
Step 3: Now, compute the cross products: For \( \overrightarrow{AB} \times \overrightarrow{AC} \): \[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
2 & -1 & 2 \end{vmatrix} = \hat{i}(1(2) - 1(-1)) - \hat{j}(1(2) - 1(2)) + \hat{k}(1(-1) - 1(2)) \] \[ = \hat{i}(2 + 1) - \hat{j}(2 - 2) + \hat{k}(-1 - 2) \] \[ = 3\hat{i} + 0\hat{j} - 3\hat{k} \] Thus, \( n_1 = (3, 0, -3) \). For \( \overrightarrow{AB} \times \overrightarrow{AD} \): \[ \overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
1 & -1 & 2 \end{vmatrix} = \hat{i}(1(2) - 1(-1)) - \hat{j}(1(2) - 1(1)) + \hat{k}(1(-1) - 1(1)) \] \[ = \hat{i}(2 + 1) - \hat{j}(2 - 1) + \hat{k}(-1 - 1) \] \[ = 3\hat{i} - \hat{j} - 2\hat{k} \] Thus, \( n_2 = (3, -1, -2) \).
Step 4: Now, calculate the dot product \( n_1 \cdot n_2 \): \[ n_1 \cdot n_2 = (3)(3) + (0)(-1) + (-3)(-2) = 9 + 0 + 6 = 15 \] Next, find the magnitudes of \( n_1 \) and \( n_2 \): \[ |n_1| = \sqrt{3^2 + 0^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] \[ |n_2| = \sqrt{3^2 + (-1)^2 + (-2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] Step 5: Now, calculate \( \cos \theta \): \[ \cos \theta = \frac{n_1 \cdot n_2}{|n_1| |n_2|} = \frac{15}{(3\sqrt{2})(\sqrt{14})} = \frac{15}{3\sqrt{28}} = \frac{5}{\sqrt{28}} = \frac{5}{2\sqrt{7}} \] Thus, the value of \( \cos \theta \) is \( \frac{5}{2\sqrt{7}} \).