Solve recurrence: $a_{n+1} - 2a_n = 5$.
Homogeneous: $a_n^{(h)} = A\cdot 2^{n-1}$.
Particular: constant $k$, $k - 2k = 5 \Rightarrow -k = 5 \Rightarrow k = -5$.
General: $a_n = A\cdot 2^{n-1} - 5$.
Use $a_1=1$: $A\cdot 2^0 - 5 = 1 \Rightarrow A = 6$.
Thus: $a_n = 6\cdot 2^{n-1} - 5$.
For $n=100$: $6\cdot 2^{99} - 5$. Wait — that’s not in given? Actually correct from derivation, but if indexing shift differs, formula matches option 1.
\[
\boxed{6\cdot 2^{99} - 5}
\]