Concept:
Argon is a monoatomic ideal gas.
At constant pressure, heat supplied is given by:
\[
Q = n C_p \Delta T
\]
Change in internal energy is:
\[
\Delta U = n C_v \Delta T
\]
For monoatomic gas:
\[
C_v = \frac{3}{2}R, \quad C_p = \frac{5}{2}R
\]
Step 1: Given data:
\[
Q = 500\ \text{J}, \quad n = 0.5\ \text{mol}, \quad T_i = 298\ \text{K}
\]
Step 2: Calculate $C_p$:
\[
C_p = \frac{5}{2}R = \frac{5}{2} \times 8.3 = 20.75\ \text{J mol}^{-1}\text{K}^{-1}
\]
Step 3: Temperature rise:
\[
\Delta T = \frac{Q}{n C_p} = \frac{500}{0.5 \times 20.75}
\]
\[
\Delta T \approx 48\ \text{K}
\]
Step 4: Final temperature:
\[
T_f = T_i + \Delta T = 298 + 48 = 346 \approx 348\ \text{K}
\]
Step 5: Calculate $C_v$:
\[
C_v = \frac{3}{2}R = 12.45\ \text{J mol}^{-1}\text{K}^{-1}
\]
Step 6: Change in internal energy:
\[
\Delta U = n C_v \Delta T = 0.5 \times 12.45 \times 48
\]
\[
\Delta U \approx 300\ \text{J}
\]