Given:
- Voltage \( V = 200 \, \text{V} \)
- Current \( I = 10 \, \text{A} \)
- Frequency \( f = 50 \, \text{Hz} \)
- Phase angle \( \theta = 30^\circ \)
The formula for the inductive reactance \( X_L \) is:
\[
X_L = \frac{V}{I \sin(\theta)}
\]
Substituting the known values:
\[
X_L = \frac{200}{10 \sin(30^\circ)} = \frac{200}{10 \times 0.5} = 40 \, \Omega
\]
The inductance \( L \) is related to the inductive reactance by:
\[
X_L = 2 \pi f L
\]
Solving for \( L \):
\[
L = \frac{X_L}{2 \pi f} = \frac{40}{2 \pi \times 50} = \frac{40}{314.16} \approx 0.127 \, \text{H} = 31.85 \, \text{mH}
\]
Thus, the inductance of the circuit is 31.85 mH.