Step 1: Identify the given values.
Mass of the substance \( m = 2 \text{ kg} \).
Heat received \( Q = 500 \text{ kJ} \).
Initial temperature \( T_1 = 100 \text{ \(^\circ\)C} \).
Final temperature \( T_2 = 200 \text{ \(^\circ\)C} \).
Step 2: Calculate the change in temperature.
The temperature change \( \Delta T = T_2 - T_1 \).
\[
\Delta T = 200 \text{ \(^\circ\)C} - 100 \text{ \(^\circ\)C} = 100 \text{ \(^\circ\)C}
\]
Note that a change in temperature of 100 \(^\circ\)C is equivalent to a change of 100 K. So, \( \Delta T = 100 \text{ K} \).
Step 3: Use the formula for heat transfer to find the specific heat.
The amount of heat transferred \( Q \) to a substance of mass \( m \) undergoing a temperature change \( \Delta T \) is given by:
\[
Q = m c \Delta T
\]
where \( c \) is the average specific heat of the substance.
Rearrange the formula to solve for \( c \):
\[
c = \frac{Q}{m \Delta T}
\]
Step 4: Substitute the values and calculate the specific heat.
\[
c = \frac{500 \text{ kJ}}{2 \text{ kg} \times 100 \text{ K}}
\]
\[
c = \frac{500}{200} \text{ kJ/kg K}
\]
\[
c = 2.5 \text{ kJ/kg K}
\]
The final answer is $\boxed{\text{4}}$.