We are given:
- Mass of solute, \( w_B = 18 \, \text{g} \)
- Mass of solvent, \( w_A = 200 \, \text{g} \)
- Freezing point depression, \( \Delta T_f = T^\circ_f - T_f = 273.15 \, \text{K} - 272.07 \, \text{K} = 1.08 \, \text{K} \)
- Freezing point depression constant for water, \( K_f = 1.86 \, \text{K kg mol}^{-1} \)
Using the formula for freezing point depression:
\[
\Delta T_f = K_f \cdot m
\]
Where \( m \) is the molality, defined as \( m = \frac{w_B \times 1000}{M_B \times w_A} \), and \( M_B \) is the molar mass of the solute. Replacing values:
\[
1.08 = 1.86 \times \frac{18 \times 1000}{M_B \times 200}
\]
Solving for \( M_B \):
\[
M_B = \frac{1.86 \times 18 \times 1000}{200 \times 1.08} = 155 \, \text{g mol}^{-1}
\]