Question:

$(100)^{50} + (99)^{50}$

Updated On: Jul 2, 2022
  • $< (101)^{50}$
  • $= (101)^{50}$
  • $> (101)^{50}$
  • $> (101)^{51}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Since, $(101)^{50} = (100 + 1)^{50}$ $= 100^{50} + \,^{50}C_{1}\,100^{49} + \,^{50}C_{2}\,100^{48} + \ldots + 1\quad\ldots\left(i\right)$ and $\left(99\right)^{50} = \left(100-1\right)^{50}$ $= 100^{50 }- \,^{50}C_{1}\,100^{49} + \,^{50}C_{2}\,100^{48} -... +1 \quad\ldots\left(ii\right)$ On subtracting $\left(ii\right)$ from $\left(i\right)$, we get $\left(101\right)^{50}-\left(99\right)^{50}= 2\left\{^{50}C_{1}\,100^{49}+\,^{50}C_{3}\,100^{47}+\ldots\right\}$ $= 2\times\,^{50}C_{1}\,100^{49} $$+\left(2 \times \,^{50}C_{3} \times 100^{47}+...\right)$ $=100 \times100^{49}+a$ positive number $> 100^{50}$ $\Rightarrow \left(101\right)^{50} > \left(100\right)^{50} + \left(99\right)^{50}$
Was this answer helpful?
0
0

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.