Question:

Find cos248o - sin212o , if sin18o = (√5 - 1)/4 

Updated On: Apr 3, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let's solve the problem step by step:

1. Express cos 248° and sin 212° in terms of known angles:

* cos 248° = cos (180° + 68°) = -cos 68°
* sin 212° = sin (180° + 32°) = -sin 32°

So the expression becomes:
cos 248° - sin 212° = -cos 68° - (-sin 32°) = -cos 68° + sin 32°

2. Express cos 68° and sin 32° in terms of sin 18°:

* cos 68° = cos (90° - 22°) = sin 22°
* sin 32° = sin (18° + 14°)

We will use the following trigonometric identities:
* sin (a + b) = sin a cos b + cos a sin b
* sin (2a) = 2 sin a cos a
* cos (2a) = 1 - 2 sin^2 a
* cos (a) = sqrt(1-sin^2(a))

3. Express sin22 in terms of sin18
Sin(22) = sin(18+4)
Sin(22) is difficult to express directly in terms of sin18. To solve this problem a different approach is needed.

4. Alternative Approach:

We can rewrite the expression as:
cos 248° - sin 212° = -cos 68° + sin 32°

We can rewrite the expression as:

-cos(90-22) + sin(18+14) = -sin(22) + sin(18+14)

We can also write:
-cos(270-22) - sin(180+32) = -sin(22)+sin(32)

Lets use sin(32) = sin(2*16) and sin(22)= sin(2*11)

cos(248) - sin(212) = -cos(68) + sin(32)

We can express cos(68) as cos(90-22) = sin(22)
Then we have, -sin(22) + sin(32)
sin(32) - sin(22)

Use sin(A) - sin(B) = 2 cos((A+B)/2)sin((A-B)/2)

sin(32) - sin(22) = 2 cos(27) sin(5)

5. Express cos 27 and sin 5 in terms of sin18
This is very difficult to do. We are going to use a calculator to find the numeric values.

cos 248° ≈ -0.3746
sin 212° ≈ -0.5299

cos 248° - sin 212° ≈ -0.3746 - (-0.5299) ≈ 0.1553

Using a calculator:

sin(18) = (sqrt(5)-1)/4 ≈ 0.3090.

2cos(27)sin(5) ≈ 0.1553

Therefore, the value is approximately 0.1553.

Final Answer: The final answer is approximately 0.1553.

Was this answer helpful?
1
0

Concepts Used:

Properties of Inverse Trigonometric Functions

The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:

Property Set 1:

  • Sin−1(x) = cosec−1(1/x), x∈ [−1,1]−{0}
  • Cos−1(x) = sec−1(1/x), x ∈ [−1,1]−{0}
  • Tan−1(x) = cot−1(1/x), if x > 0  (or)  cot−1(1/x) −π, if x < 0
  • Cot−1(x) = tan−1(1/x), if x > 0 (or) tan−1(1/x) + π, if x < 0

Property Set 2:

  • Sin−1(−x) = −Sin−1(x)
  • Tan−1(−x) = −Tan−1(x)
  • Cos−1(−x) = π − Cos−1(x)
  • Cosec−1(−x) = − Cosec−1(x)
  • Sec−1(−x) = π − Sec−1(x)
  • Cot−1(−x) = π − Cot−1(x)

Property Set 3:

  • Sin−1(1/x) = cosec−1x, x≥1 or x≤−1
  • Cos−1(1/x) = sec−1x, x≥1 or x≤−1
  • Tan−1(1/x) = −π + cot−1(x)

Property Set 4:

  • Sin−1(cos θ) = π/2 − θ, if θ∈[0,π]
  • Cos−1(sin θ) = π/2 − θ, if θ∈[−π/2, π/2]
  • Tan−1(cot θ) = π/2 − θ, θ∈[0,π]
  • Cot−1(tan θ) = π/2 − θ, θ∈[−π/2, π/2]
  • Sec−1(cosec θ) = π/2 − θ, θ∈[−π/2, 0]∪[0, π/2]
  • Cosec−1(sec θ) = π/2 − θ, θ∈[0,π]−{π/2}
  • Sin−1(x) = cos−1[√(1−x2)], 0≤x≤1 = −cos−1[√(1−x2)], −1≤x<0

Property Set 5:

  • Sin−1x + Cos−1x = π/2
  • Tan−1x + Cot−1(x) = π/2
  • Sec−1x + Cosec−1x = π/2

Property Set 6:

  • If x, y > 0

Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1

Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1

  • If x, y < 0

Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1

Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1

Property Set 7:

  • sin−1(x) + sin−1(y) = sin−1[x√(1−y2)+ y√(1−x2)]
  • cos−1x + cos−1y = cos−1[xy−√(1−x2)√(1−y2)]

Property Set 8:

  • sin−1(sin x) = −π−π, if x∈[−3π/2, −π/2]

= x, if x∈[−π/2, π/2]

= π−x, if x∈[π/2, 3π/2]

=−2π+x, if x∈[3π/2, 5π/2] And so on.

  • cos−1(cos x) = 2π+x, if x∈[−2π,−π]

= −x, ∈[−π,0]

= x, ∈[0,π]

= 2π−x, ∈[π,2π]

=−2π+x, ∈[2π,3π]

  • tan−1(tan x) = π+x, x∈(−3π/2, −π/2)

= x, (−π/2, π/2)

= x−π, (π/2, 3π/2)

= x−2π, (3π/2, 5π/2)

Property Set 9: