Find cos248o - sin212o , if sin18o = (√5 - 1)/4
Step 1: Express cos 248° and sin 212° in terms of known angles:
\[
\cos 248^\circ = \cos (180^\circ + 68^\circ) = -\cos 68^\circ
\]
\[
\sin 212^\circ = \sin (180^\circ + 32^\circ) = -\sin 32^\circ
\]
So, the expression becomes:
\[
\cos 248^\circ - \sin 212^\circ = -\cos 68^\circ + \sin 32^\circ
\]
Step 2: Express cos 68° and sin 32° in terms of known angles:
\[
\cos 68^\circ = \cos (90^\circ - 22^\circ) = \sin 22^\circ
\]
\[
\sin 32^\circ = \sin (18^\circ + 14^\circ)
\]
Using the identity \( \sin(a + b) = \sin a \cos b + \cos a \sin b \), we simplify:
\[
\cos 248^\circ - \sin 212^\circ = -\sin 22^\circ + \sin (18^\circ + 14^\circ)
\]
Step 3: Simplify the expression using trigonometric identities:
We use the identity for the difference of sines:
\[
\sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)
\]
Applying this identity:
\[
\sin 32^\circ - \sin 22^\circ = 2 \cos 27^\circ \sin 5^\circ
\]
Step 4: Use a calculator to find the numeric values:
Using a calculator, we find:
\[
\cos 248^\circ \approx -0.3746, \quad \sin 212^\circ \approx -0.5299
\]
Thus:
\[
\cos 248^\circ - \sin 212^\circ \approx -0.3746 - (-0.5299) = 0.1553
\]
The expression evaluates to approximately 0.1553.
Final Answer:
Therefore, the final answer is approximately:
\[
\boxed{0.1553}
\]
The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1
= x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
= −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
= x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)