Question:

$\quad\int_{0}^{1} \left[f \left(x\right)g'' \left(x\right)-f''\left(x\right)g \left(x\right)\right]$ dx is equal to : [Given f(0) = g(0) = 0]

Updated On: Apr 26, 2024
  • f (1) g(1) -f(1) g??l)
  • f(l) g??l) + (l) f??(l)
  • f (l) g??l) - f??l) g(l)
  • none of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Integrating by parts. $\quad\int f \left(x\right) g'' \left(x\right)dx-\int f''\left(x\right)g\left(x\right)dx$ $=f \left(x\right)g'\left(x\right)-\int f '\left(x\right)g'\left(x\right)dx$ $-f '\left(x\right)g\left(x\right)+\int f '\left(x\right)g'\left(x\right) dx$ $=f\left(x\right)g'\left(x\right)-f'\left(x\right)g\left(x\right)$ $Hence,\, \int_{0}^{1}f \left(x\right)g''\left(x\right)dx-\int_{0}^{1}f''\left(x\right)g\left(x\right) dx$ $=f\left(1\right)g'\left(1\right)-f'\left(1\right)g\left(1\right)-f \left(0\right)g'\left(0\right)+f'\left(0\right)g\left(0\right)$ $f\left(1\right)g'\left(1\right)-f'\left(1\right)g\left(1\right)$
Was this answer helpful?
0
0

Concepts Used:

Integration by Parts

Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:

∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the first function u(x)
  • v is the second function v(x)
  • u' is the derivative of the function u(x)

The first function ‘u’ is used in the following order (ILATE):

  • 'I' : Inverse Trigonometric Functions
  • ‘L’ : Logarithmic Functions
  • ‘A’ : Algebraic Functions
  • ‘T’ : Trigonometric Functions
  • ‘E’ : Exponential Functions

The rule as a diagram: