>
Mathematics
List of top Mathematics Questions
For any 2
$\times$
2 matrix A, if A (adj. A) =
$\begin{bmatrix}10&0\\ 0&10\end{bmatrix}$
en | A | is equal to :
Mathematics
Determinants
If
$a^{-1} + b^{-1} + c^{-1} = 0$
such that
$\begin{vmatrix}1+a&1&1\\ 1&1+b&1\\ 1&1&1+c\end{vmatrix} = \lambda$
then the value of
$\lambda$
is :
Mathematics
Determinants
If
$A = \begin{bmatrix}-2&6\\ -5&7\end{bmatrix} $
, then adj A:
Mathematics
Determinants
If
$A^2 - A + I = 0$
, then the inverse of A is
Mathematics
Determinants
If
$A = \begin{bmatrix}3&-3&4\\ 2&-3&4\\ 0&-1&1\end{bmatrix} $
, then
$A^{-1}$
equal to:
Mathematics
Determinants
If A and B are square matrices of order 3, such that
$| A | = - 1, | B | = 3$
then the determinant of 3 AB is equal to
Mathematics
Determinants
If
$a$
,
$b$
,
$c$
are the roots of the equation
$x^{3}-3x^{2}+3x+7=0$
, then the value of
$\left|\begin{matrix}2bc-a^{2}&c^{2}&b^{2}\\ c^{2}&2ac-b^{2}&a^{2}\\ b^{2}&a^{2}&2ab-c^{2}\end{matrix}\right|$
is
Mathematics
Determinants
If
$A = \left[\begin{matrix}2&0&0\\ 2&2&0\\ 2&2&2\end{matrix}\right]$
, then adj (adj A) is equal to
Mathematics
Determinants
If
$\left[\begin{matrix}2+x&3&4\\ 1&-1&2\\ x&1&-5\end{matrix}\right]$
is a singular matrix, then
$x$
is
Mathematics
Determinants
If for the non-singular matrix
$A, A^{2} = I$
, then find
$A^{-1}$
.
Mathematics
Determinants
If
$I_3$
is the identity matrix of order 3, then
$I^{-1}_3$
is
Mathematics
Determinants
If n is an integer and if $ \begin{vmatrix} x^n& x^{n+2}& x^{n+3} \\[0.3em] y^n &y^{n+2} & y^{n+3} \\[0.3em] z^n & z^{n+2}&z^{n+3} \end{vmatrix}=(x-y\,(y-z)\,(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$ then n equals
Mathematics
Determinants
If the points
$\left(a_{1}, b_{1}\right)$
,
$\left(a_{2}, b_{2}\right)$
and
$\left(a_{1} + a_{2}, b_{1} + b_{2}\right)$
are collinear, then
Mathematics
Determinants
If the system of equations
$2x + 3y+5 = 0$
,
$x + ky + 5 = 0$
,
$kx - 12y - 14 = 0$
has non-trivial solution, then the value of
$k$
is
Mathematics
Determinants
If the trivial solution is the only solution of the system of equations
$x - ky + z = 0$
$kx + 3y - kz = 0$
$3x +y - z = 0$
then the set of all values of k is :
Mathematics
Determinants
If the value of a third order determinant is 11, then the value of the square of the determinant formed by the co-factors will be
Mathematics
Determinants
If (x + 9) = 0 is a factor of
$\begin{vmatrix}x&3&7\\ 2&x&2\\ 7&6&x\end{vmatrix} = 0 $
, then the other factor is:
Mathematics
Determinants
If x is a positive integer, then $\begin{vmatrix} x! & (x+1)! & (x+2)! \\[0.3em] (x+1)! & (x+2)! & (x+3)! \\[0.3em] (x+2)! & (x+3)! &(x+4)! \end{vmatrix}$ is equal to
Mathematics
Determinants
If
$\begin{vmatrix}y+z&x-z&x-y\\ y-z &z+x&y-x\\ z-y &z-x&x+y\end{vmatrix}= kxyz $
then the value of k is :
Mathematics
Determinants
Let A be a
$3 \times 3$
matrix such that
$A\begin{bmatrix}1&2&3\\ 0&2&3\\ 0&1&1\end{bmatrix} = \begin{bmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{bmatrix} $
Then
$A^{-1}$
is :
Mathematics
Determinants
The solution set of the equation
$\begin{vmatrix}1&4&20\\ 1&-2&5\\ 1&2x&5x^{2}\end{vmatrix} = 0$
is
Mathematics
Determinants
The solution set of the inequality
$37 - (3x + 5) \ge 9x - 8 (x - 3)$
is
Mathematics
Determinants
The solution set of the inequality
$ { 5^{x + 2} } > \left( \frac{1}{25} \right)^{ {1 /x}}$
is
Mathematics
Determinants
The solution set of the inequality
$\left|9^{x}-3^{x+1}-15\right|< 2.9^{x}-3^{x}$
is
Mathematics
Determinants
Write the cofactors of each element of the first column of the following matrices.
$A=\left[\begin{matrix}4&-1&2\\ 1&-3&2\\ 3&5&2\end{matrix}\right]$
Mathematics
Determinants
Prev
1
...
871
872
873
874
875
...
922
Next