Let
\[
f(x)=
\begin{cases}
3x, & x<0,\\
1+x+[x], & 0\le x\le 2,\\
5, & x>2,
\end{cases}
\]
where \([x]\) denotes the greatest integer function.
If \(\alpha\) and \(\beta\) are the number of points in \(\mathbb{R}\) where \(f\) is not continuous and is not differentiable respectively, then \(\alpha+\beta\) equals: