Let \( X \) be a discrete random variable with probability mass function \( p \in \{p_0, p_1\} \), where To test \( H_0 : p = p_0 \) against \( H_1 : p = p_1 \), the power of the most powerful test of size 0.05, based on \( X \), equals _________
\[ P = \begin{bmatrix} 0.25 & 0.75 \\ 0.75 & 0.25 \end{bmatrix}. \]
\[ \sum_{k=1}^{100} E[(X_{2k})^2] \]