Let \(c_{00} = \{(x_1, x_2, x_3, \dots) : x_i \in \mathbb{R}, i \in \mathbb{N}, x_i \neq 0 \text{ only for finitely many indices } i\}\).
For \((x_1, x_2, x_3, \dots) \in c_{00}\), let \(||(x_1, x_2, x_3, \dots)||_\infty = \sup\{|x_i| : i \in \mathbb{N}\}\).
Define \(F, G: (c_{00}, ||.||_\infty) \to (c_{00}, ||.||_\infty)\) by
\[
F((x_1, x_2, \dots, x_n, \dots)) = ((1+1)x_1, (2+\frac{1}{2})x_2, \dots, (n+\frac{1}{n})x_n, \dots),
\]
\[
G((x_1, x_2, \dots, x_n, \dots)) = \left(\frac{x_1}{1+1}, \frac{x_2}{2+\frac{1}{2}}, \dots, \frac{x_n}{n+\frac{1}{n}}, \dots\right),
\]
for all \((x_1, x_2, \dots, x_n, \dots) \in c_{00}\).
Then