>
CBSE CLASS XII
List of top Questions asked in CBSE CLASS XII
Derivative of \( x^2 \) with respect to \( x^3 \), is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Inverse of a Matrix
The function \( f(x) = |x| + |x - 2| \) is
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Area of the region bounded
Let
\[ A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \] and \[ B = \frac{1}{3} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & \lambda \end{bmatrix}. \] If \( AB = I \), then the value of \( \lambda \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If \( \vec{a} \) and \( \vec{b} \) are two vectors such that \( |\vec{a}| = 1 \), \( |\vec{b}| = 2 \), and \( \vec{a} \cdot \vec{b} = \sqrt{3} \), then the angle between \( 2\vec{a} \) and \( -\vec{b} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If \( A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \) and \( A^2 + 7I = kA \), then the value of \( k \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Let \( \vec{a} \) be any vector such that \( |\vec{a}| = a \). The value of \( |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Area of the region bounded
The vectors \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} - 3\hat{j} - 5\hat{k} \), and \( \vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k} \) represent the sides of:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
The lines \( \frac{1 - x}{2} = \frac{y - 1}{3} = \frac{z}{1} \) and \( \frac{2x - 3}{2p} = \frac{y}{-1} = \frac{z - 4}{7} \) are perpendicular to each other for \( p \) equal to:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
3D Geometry
The maximum value of \( Z = 4x + y \) for a L.P.P. whose feasible region is given below is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programming Problem and its Mathematical Formulation
The probability distribution of a random variable \( X \) is:
\[\begin{array}{c|c|c|c|c|c} \hline X & 0 & 1 & 2 & 3 & 4 \\ \hline P(X) & 0.1 & k & 2k & k & 0.1 \\ \hline \end{array}\]
where \( k \) is some unknown constant. The probability that the random variable \( X \) takes the value 2 is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Probability
If
\(A = [a_{ij}] = \begin{bmatrix} 2 & -1 & 5 \\ 1 & 3 & 2 \\ 5 & 0 & 4 \end{bmatrix}\)
and \( c_{ij} \) is the cofactor of element \( a_{ij} \), then the value of \( a_{21}c_{11} + a_{22}c_{12} + a_{23}c_{13} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
If
\(A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}\)
and \( A^2 - kA - 5I = 0 \), then the value of \( k \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
The value of constant \( c \) that makes the function \( f \) defined by
\(f(x) = \ x^2 - c^2\)
,
\(\&\ \text{if } x<4\)
\(cx + 20, \&\ \text{if } x \geq 4\)
continuous for all real numbers is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Continuity
The value of \( \int_{-1}^1 |x| \, dx \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Integration
The number of arbitrary constants in the particular solution of the differential equation
\[ \log \left( \frac{dy}{dx} \right) = 3x + 4y; \quad y(0) = 0 \]
is/are:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential equations
If
\(\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}\)
is a scalar matrix, then the value of \( a + 2b + 3c + 4d \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
If
\(A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}\)
, then the value of \( I - A + A^2 - A^3 + \ldots \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
Given that
\(( A)^{-1} = \frac{1}{7}\)
\( \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}\)
, matrix \( A \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
The integrating factor of the differential equation \( (x + 2y^2) \frac{dy}{dx} = y \, (y>0) \) is:}
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential equations
A vector perpendicular to the line \( \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j}) \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
If \( \vec{a} \) and \( \vec{b} \) are two vectors such that \( |\vec{a}| = 1 \), \( |\vec{b}| = 2 \), and \( \vec{a} \cdot \vec{b} = \sqrt{3} \), then the angle between \( 2\vec{a} \) and \( -\vec{b} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
Assertion (A):
The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of \( Z = x + 2y \) occurs at infinite points.
Reason (R):
The optimal solution of a LPP having bounded feasible region must occur at corner points.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programming Problem and its Mathematical Formulation
Assertion (A):
The relation \( R = \{(x, y) : (x + y) \text{ is a prime number and } x, y \in \mathbb{N}\} \) is not a reflexive relation.
Reason (R):
The number \( 2n \) is composite for all natural numbers \( n \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Relations
Find the principal value of \( \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Trigonometric Identities
Show that \( f(x) = \frac{4 \sin x}{2 + \cos x} - x \) is an increasing function of \( x \) in \( \left[ 0, \frac{\pi}{2} \right] \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differentiation
Prev
1
...
82
83
84
85
86
...
255
Next