Step 1: Fleming's Left Hand Rule.
Fleming's Left Hand Rule is used to find the direction of force exerted on a moving charged particle in a magnetic field. It states that if you stretch the thumb, index finger, and middle finger of your left hand at right angles to each other:
- The index finger points in the direction of the magnetic field \( \vec{B} \),
- The middle finger points in the direction of the velocity \( \vec{v} \) of the particle,
- The thumb will point in the direction of the force \( \vec{F} \) on the charged particle.
Step 2: Formula for magnetic force.
The force \( \vec{F} \) on a charged particle moving in a magnetic field is given by the Lorentz force law:
\[
\vec{F} = q (\vec{v} \times \vec{B})
\]
where:
- \( q \) is the charge of the particle,
- \( \vec{v} \) is the velocity of the particle,
- \( \vec{B} \) is the magnetic field,
- \( \times \) denotes the vector cross product.
Step 3: Cross product calculation.
We are given:
\[
\vec{v} = (-75 \hat{i} + 100 \hat{j}) \, \text{m/s}, \quad \vec{B} = (4 \hat{i} + 3 \hat{j}) \, \text{tesla}, \quad q = 1.0 \times 10^{-9} \, \text{C}
\]
To find the magnetic force, we calculate the cross product \( \vec{v} \times \vec{B} \):
\[
\vec{v} \times \vec{B} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} \\ -75 & 100 & 0 \ 4 &\ 3 & 0 \end{matrix} \right|
\]
Expanding this determinant:
\[
\vec{v} \times \vec{B} = \hat{i}(100 \times 0 - 0 \times 3) - \hat{j}(-75 \times 0 - 0 \times 4) + \hat{k}(-75 \times 3 - 100 \times 4)
\]
\[
\vec{v} \times \vec{B} = \hat{k}(-225 - 400) = \hat{k}(-625)
\]
Thus:
\[
\vec{v} \times \vec{B} = -625 \hat{k} \, \text{N C}^{-1}
\]
Step 4: Force on the particle.
Now, we use the formula for the force:
\[
\vec{F} = q (\vec{v} \times \vec{B}) = 1.0 \times 10^{-9} \times (-625 \hat{k})
\]
\[
\vec{F} = -625 \times 10^{-9} \hat{k} = -0.625 \times 10^{-6} \hat{k} \, \text{N}
\]
Step 5: Conclusion.
The magnitude of the force is \( 0.625 \, \mu\text{N} \), and the direction is along the negative \( \hat{k} \)-axis (perpendicular to both \( \vec{v} \) and \( \vec{B} \)).