(i) The subsets of {a} are \(\phi\) and {a}.
(ii) The subsets of {a, b} are \(\phi\), {a}, {b}, and {a, b}.
(iii) The subsets of {1, 2, 3} are \(\phi\), {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}
(iv) The only subset of \(\phi\) is \(\phi\).
Consider the following subsets of the Euclidean space \( \mathbb{R}^4 \):
\( S = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = 0 \} \),
\( T = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = 1 \} \),
\( U = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = -1 \} \).
Then, which one of the following is TRUE?
Let the functions \( f: \mathbb{R} \to \mathbb{R} \) and \( g: \mathbb{R}^2 \to \mathbb{R} \) be given by \[ f(x_1, x_2) = x_1^2 + x_2^2 - 2x_1x_2, \quad g(x_1, x_2) = 2x_1^2 + 2x_2^2 - x_1x_2. \] Consider the following statements:
S1: For every compact subset \( K \) of \( \mathbb{R} \), \( f^{-1}(K) \) is compact.
S2: For every compact subset \( K \) of \( \mathbb{R} \), \( g^{-1}(K) \) is compact. Then, which one of the following is correct?
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
Sets are of various types depending on their features. They are as follows: