Organisms often produce a greater number of offspring as a survival strategy. This leads to competition for resources among individuals of the same species and between different species. During this struggle for existence, minor variations naturally emerge in each new generation as a result of genetic inheritance from their parents, providing the raw material for evolutionary change. Nature then selects those variations that prove advantageous or adaptive for the organism's survival and reproduction.
Therefore, the appropriate sequence is option (C): Overproduction, competition for resources, emergence of variations, and natural selection.
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
A constant voltage of 50 V is maintained between the points A and B of the circuit shown in the figure. The current through the branch CD of the circuit is :
Evolution is a process that occurs in changes in the genetic content of a population over time. Evolutionary change is generally classified into two: microevolution and macroevolution. The process of changes in allele frequencies in a population over time is a microevolutionary process. Three main mechanisms that cause allele frequency change are natural selection, genetic drift, and gene flow. On the other hand, macroevolution refers to change at or above the level of the species.