Question:

Which one of the following relations on $R$ is an equivalence relation?

Updated On: Jul 7, 2022
  • $aR_{1}b \Leftrightarrow \left|a\right|=\left|b\right|$
  • $aR_{2}b \Leftrightarrow a \ge b$
  • $aR_{3}b \Leftrightarrow a$ divides $b$
  • $aR_{4}b \Leftrightarrow a < b$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$(i)$ Reflexive : $a \in R$, $aR_1a$ $ \Rightarrow |a| = |a|$ $(ii)$ Symmetric : $a$, $b \in R$ $aR_{1}b \Rightarrow \left|a\right| = \left|b\right|$ $ \Rightarrow \left|b\right| = \left|a\right|$ $ \Rightarrow bR_{1}a$ $(iii)$ Transitive : $a$, $b$, $c \in R$ $aR_{1}b \Rightarrow \left|a\right|=\left|b\right|$, $bR_{1}c$ $ \Rightarrow \left|b\right|=\left|c\right|$. So, $\left|a\right|=\left|c\right|$ $ \Rightarrow aR_{1}c$ $\Rightarrow R_{1}$ is an equivalence relation on $R$.
Was this answer helpful?
0
0

Top Questions on Relations and functions

View More Questions