$(i)$ Reflexive : $a \in R$, $aR_1a$
$ \Rightarrow |a| = |a|$
$(ii)$ Symmetric : $a$, $b \in R$
$aR_{1}b \Rightarrow \left|a\right| = \left|b\right|$
$ \Rightarrow \left|b\right| = \left|a\right|$
$ \Rightarrow bR_{1}a$
$(iii)$ Transitive : $a$, $b$, $c \in R$
$aR_{1}b \Rightarrow \left|a\right|=\left|b\right|$, $bR_{1}c$
$ \Rightarrow \left|b\right|=\left|c\right|$. So, $\left|a\right|=\left|c\right|$
$ \Rightarrow aR_{1}c$
$\Rightarrow R_{1}$ is an equivalence relation on $R$.