An intensive property is one that does not depend on the amount of substance or the size of the system. It remains constant regardless of the quantity of material in the system.
Step 1: Understanding each option - Option (A): Chemical potential — Chemical potential is an intensive property because it does not change with the amount of substance in the system. It is a measure of the energy required to add an additional particle to the system at constant temperature and pressure. This is the correct answer.
- Option (B): Volume — Volume is an extensive property, meaning it depends on the size or amount of material in the system.
- Option (C): Mass — Mass is also an extensive property, as it depends on the quantity of substance present.
- Option (D): Entropy — Entropy is an extensive property when considered as a total quantity for the system, as it depends on the amount of material. However, the entropy per unit mass or volume can be intensive.
Step 2: Conclusion The correct answer is Option (A) because chemical potential is an intensive property.
Radiative heat flux \( \dot{q} \) at a hot surface at a temperature \( T_s \) can be expressed as \[ \dot{q} = A f(T_s, T_\infty) (T_s - T_\infty) \] where \( A \) is a constant and \( T_\infty \) is the temperature of the surroundings (temperatures are expressed in K). The function \( f(T_s, T_\infty) \) is given by ______.
Match the steel plant related processes in Column I with the associated information in Column II.
Consider the phase diagram of a one-component system given below. \( V_{\alpha} \), \( V_{\beta} \), and \( V_{{Liquid}} \) are the molar volumes of \( \alpha \), \( \beta \), and liquid phases, respectively. Which one of the following statements is TRUE? Given: The change in molar enthalpies, \( \Delta H_{\alpha \to \beta} \) and \( \Delta H_{\beta \to {Liquid}} \), are positive.
For two continuous functions \( M(x, y) \) and \( N(x, y) \), the relation \( M dx + N dy = 0 \) describes an exact differential equation if
A linear regression model was fitted to a set of \( (x, y) \) data. The total sum of squares and sum of squares of error are 1200 and 120, respectively. The coefficient of determination \( R^2 \) of the fit is ......... (rounded off to one decimal place).
Match the phenomena in Column I with the typical observations in Column II.
Consider the gas phase reaction: \[ CO + \frac{1}{2} O_2 \rightleftharpoons CO_2 \] At equilibrium for a particular temperature, the partial pressures of \( CO \), \( O_2 \), and \( CO_2 \) are found to be \( 10^{-6} \, {atm} \), \( 10^{-6} \, {atm} \), and \( 16 \, {atm} \), respectively. The equilibrium constant for the reaction is ......... \( \times 10^{10} \) (rounded off to one decimal place).
For an application where the Reynolds number is to be kept constant, a liquid with a density of 1 g cm\(^-3\) and viscosity of 0.01 Poise results in a characteristic speed of 1 cm s\(^-1\). If this liquid is replaced by another with a density of 1.25 g cm\(^-3\) and viscosity of 0.015 Poise, the characteristic velocity will be ......... cm s\(^-1\) (rounded off to one decimal place).
Consider a fully developed, steady, one-dimensional, laminar flow of a Newtonian liquid through a pipe. The maximum velocity in the pipe is proportional to which of the following quantities?
Given: \( \Delta P \) is the difference between the outlet and inlet pressure, \( \mu \) is the dynamic viscosity of the liquid, and \( R \) and \( L \) are the radius and length of the pipe, respectively.