Question:

Which of the following temperatures is the highest?

Show Hint

When comparing temperatures in different scales, always convert all values to a single scale before comparing. The temperature closest to zero on the negative side is the highest.
Updated On: Jan 14, 2026
  • \(100\,\text{K}\)
  • \(-13^\circ\text{F}\)
  • \(-20^\circ\text{C}\)
  • \(-23^\circ\text{C}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Convert all temperatures to the same scale (Celsius). Step 2: Convert \(100\,\text{K}\) to Celsius. \[ ^\circ\text{C} = K - 273 = 100 - 273 = -173^\circ\text{C} \] Step 3: Convert \(-13^\circ\text{F}\) to Celsius. \[ ^\circ\text{C} = \frac{5}{9}(F - 32) \] \[ ^\circ\text{C} = \frac{5}{9}(-13 - 32) = \frac{5}{9}(-45) = -25^\circ\text{C} \] Step 4: Write the remaining values in Celsius. \[ -20^\circ\text{C}, \quad -23^\circ\text{C} \] Step 5: Compare all temperatures in Celsius. \[ -173^\circ\text{C},\ -25^\circ\text{C},\ -20^\circ\text{C},\ -23^\circ\text{C} \] The highest temperature (closest to zero) is: \[ -20^\circ\text{C} \] But among the converted values: \[ -25^\circ\text{C}>-173^\circ\text{C} \] Comparing all options correctly: \[ -20^\circ\text{C} \text{ is higher than } -23^\circ\text{C} \] However, option (B) corresponds to \(-25^\circ\text{C}\), which is lower than \(-20^\circ\text{C}\). Thus, re-check: Highest = \(-20^\circ\text{C}\) Final Answer: \[ \boxed{\text{(C)}} \]
Was this answer helpful?
0
0