A system is causal if its output \(y(n)\) at any time \(n\) depends only on present and/or past inputs (\(x(k)\) where \(k \le n\)). It is non-causal if it depends on future inputs (\(x(k)\) where \(k>n\)).
(a) \( y(n) = x(n) - x(n-1) \): Depends on current \(x(n)\) and past \(x(n-1)\). CAUSAL.
(b) \( y(n) = K \sum_{k=-\infty}^{n} x(k) \) (assuming \(\frac{\delta y}{\delta x}=K\)): Depends on present and all past inputs. CAUSAL (accumulator).
(c) \( y(n) = ax(n) \): Depends only on current input \(x(n)\). CAUSAL.
(d) \( y(n) = x(-n) \):
Let \(n = -1\). Then \(y(-1) = x(-(-1)) = x(1)\). The output at time \(-1\) depends on the input at time \(1\). Since \(1>-1\), this is a future input.
NON-CAUSAL. (This system performs time reversal).
\[ \boxed{y(n) = x(-n)} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |