The Arrhenius equation is given by:
\[ k = Ae^{-E_a/RT} \]
where: $^*$ $k$ is the rate constant; $^*$ $A$ is the pre-exponential factor; $^*$ $E_a$ is the activation energy; $^*$ $R$ is the gas constant; $^*$ $T$ is the temperature in Kelvin.
Taking the natural logarithm of both sides:
\[ \ln k = \ln A - \frac{E_a}{RT} \]
This equation can be rearranged into the form of a straight line equation ($y = mx + c$):
\[ \ln k = -\frac{E_a}{R} \left( \frac{1}{T} \right) + \ln A \]
where:
$y = \ln k$
$x = 1/T$
$m = -E_a/R$ (slope)
$c = \ln A$ (y-intercept)
Since activation energy ($E_a$) and the gas constant ($R$) are always positive, the slope ($-E_a/R$) will always be negative. Therefore, the plot of $\ln k$ versus $1/T$ should be a straight line with a negative slope. This corresponds to option (3).
The rate of a reaction:
A + B −→ product
is given below as a function of different initial concentrations of A and B.
Experiment | \([A]\) (mol L\(^{-1}\)) | \([B]\) (mol L\(^{-1}\)) | Initial Rate (mol L\(^{-1}\) min\(^{-1}\)) |
---|---|---|---|
1 | 0.01 | 0.01 | \(5 \times 10^{-3}\) |
2 | 0.02 | 0.01 | \(1 \times 10^{-2}\) |
3 | 0.01 | 0.02 | \(5 \times 10^{-3}\) |
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :