Question:

Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \( \text{Al}_2(\text{SO}_4)_3 \)? Given that \( \Lambda^\circ_{\text{Al}^{3+}} \) and \( \Lambda^\circ_{\text{SO}_4^{2-}} \) are the equivalent conductances at infinite dilution of the respective ions?

Show Hint

For ionic compounds, the equivalent conductance at infinite dilution is the sum of the conductances of the individual ions in the solution.
Updated On: Jan 6, 2026
  • \( 2\Lambda^\circ_{\text{Al}^{3+}} + 3\Lambda^\circ_{\text{SO}_4^{2-}} \)
  • \( \Lambda^\circ_{\text{Al}^{3+}} + \Lambda^\circ_{\text{SO}_4^{2-}} \)
  • \( \left( \Lambda^\circ_{\text{Al}^{3+}} + 3\Lambda^\circ_{\text{SO}_4^{2-}} \right) \times 6 \)
  • \( \frac{1}{3}\Lambda^\circ_{\text{Al}^{3+}} + \frac{1}{2}\Lambda^\circ_{\text{SO}_4^{2-}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The equivalent conductance of a compound at infinite dilution is the sum of the individual conductances of its ions. Since \( \text{Al}_2(\text{SO}_4)_3 \) dissociates into two \( \text{Al}^{3+} \) ions and three \( \text{SO}_4^{2-} \) ions, the total conductance is simply the sum of the individual ion conductances: \[ \Lambda^\circ_{\text{Al}_2(\text{SO}_4)_3} = 2\Lambda^\circ_{\text{Al}^{3+}} + 3\Lambda^\circ_{\text{SO}_4^{2-}} \] The correct expression is therefore option (a), which represents the sum of the conductances of each ion.

Step 2: Conclusion.
The equivalent conductance at infinite dilution of \( \text{Al}_2(\text{SO}_4)_3 \) is \( 2\Lambda^\circ_{\text{Al}^{3+}} + 3\Lambda^\circ_{\text{SO}_4^{2-}} \), corresponding to option (a).
Was this answer helpful?
0
0

Top Questions on Electrochemistry

View More Questions