Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

If 0.01 mol of $\mathrm{P_4O_{10}}$ is removed from 0.1 mol, then the remaining molecules of $\mathrm{P_4O_{10}}$ will be:
An element has two isotopes having atomic masses 10 and 15 u, respectively. If the percent abundance of lighter isotopes is 80%, then the average atomic mass of the element is: