At the uppermost position (top), tension \( T_{\text{top}} \) and weight \( mg \) provide centripetal force:
\[
T_{\text{top}} + mg = \frac{mv^2}{r}.
\]
At the horizontal position, tension \( T_{\text{horizontal}} \) provides centripetal force:
\[
T_{\text{horizontal}} = \frac{mv^2}{r}.
\]
Assuming constant speed (minimum speed at top), let’s find minimum speed at top: \( v^2 = rg \) (just enough to keep string taut).
\[
T_{\text{top}} = \frac{m \cdot rg}{r} - mg = 0.
\]
At bottom (not horizontal, assuming typo for bottom as common in such problems):
\[
T_{\text{bottom}} = \frac{mv^2}{r} + mg.
\]
Using energy conservation from top to bottom:
\[
\frac{1}{2}mv_{\text{top}}^2 + mgh = \frac{1}{2}mv_{\text{bottom}}^2, \quad h = 2r, \quad v_{\text{top}}^2 = rg.
\]
\[
\frac{1}{2}m(rg) + mg(2r) = \frac{1}{2}mv_{\text{bottom}}^2 \quad \Rightarrow \quad \frac{rg}{2} + 2rg = \frac{v_{\text{bottom}}^2}{2} \quad \Rightarrow \quad v_{\text{bottom}}^2 = 5rg.
\]
\[
T_{\text{bottom}} = \frac{m \cdot 5rg}{r} + mg = 5mg + mg = 6mg.
\]
Difference: \( T_{\text{bottom}} - T_{\text{top}} = 6mg - 0 = 6mg \).
Answer: 6mg.