Resistance of wire initially is
$R =\rho \frac{l}{A}$
or $R =\rho \frac{l}{\pi r^{2}}$
Volume of wire remains same even after stretching it.
Therefore, $\pi r^{2} l=\pi r^{' 2} l'$
where, $r$ and $l=$ initial radius and length of wire
$r'$ and $l'=$ final radius and length of wire
Since, $r'=\frac{r}{2}$, therefore
$\pi r^{2} l=\pi\left(\frac{r}{2}\right)^{2} l'$
$\Rightarrow l'=4 l$
Now, new resistance of wire is given by
$R'=\rho \frac{l'}{-A'}=\rho \frac{l'}{-\pi r^{2}}$
$=\rho \cdot \frac{4 l}{\pi\left(\frac{r}{2}\right)^{2}}$
$=16 \times \rho \cdot \frac{l}{\pi r^{2}}$
$\Rightarrow R'=16 R$