Step 1: Translate to congruences.
Let $N$ be the number of pebbles. Then
\[
N \equiv 10 \pmod{32},\qquad
N \equiv 18 \pmod{40},\qquad
N \equiv 50 \pmod{72}.
\]
Step 2: Solve the first two congruences (combine mod $32$ and $40$).
Write $N = 10 + 32a$. Impose $N \equiv 18 \pmod{40}$:
\[
10+32a \equiv 18 \ (\bmod\ 40)\ ⇒\ 32a \equiv 8 \ (\bmod\ 40).
\]
Since $32 \equiv -8\ (\bmod\ 40)$,
\[
-8a \equiv 8 \ (\bmod\ 40)\ ⇒\ 8a \equiv 32 \ (\bmod\ 40)\ ⇒\ a \equiv 4 \ (\bmod\ 5).
\]
Hence $a=4+5t$ and
\[
N=10+32(4+5t)=138+160t\ ⇒\ N \equiv 138 \pmod{160}.
\]
Step 3: Bring in the third congruence (mod $72$).
We need $138+160t \equiv 50 \ (\bmod\ 72)$.
Reduce:
\[
138 \equiv 66\ (\bmod\ 72), 160 \equiv 16\ (\bmod\ 72).
\]
So
\[
66+16t \equiv 50\ (\bmod\ 72)\ ⇒\ 16t \equiv -16 \equiv 56\ (\bmod\ 72).
\]
Divide by $\gcd(16,72)=8$:
\[
2t \equiv 7\ (\bmod\ 9).
\]
The inverse of $2$ modulo $9$ is $5$ (since $2 5 \equiv 1$), hence
\[
t \equiv 5 7 \equiv 35 \equiv 8\ (\bmod\ 9) ⇒ t=8+9k.
\]
Step 4: Smallest positive solution.
Take $t=8$:
\[
N=138+160 8 = 138+1280 = 1418.
\]
This satisfies all three congruences and is minimal.
\[
\boxed{1418}
\]