Question:

When a heap of pebbles is grouped in 32, 40, or 72, it leaves remainders 10, 18, and 50 respectively. What is the minimum number of pebbles in the heap?

Show Hint

When remainders differ across moduli, first combine two congruences into one using $N = r_1 + m_1 a$, then solve the reduced congruence with the third modulus. Always reduce coefficients and divide by $\gcd$ when possible.
Updated On: Aug 18, 2025
  • 1416
  • 1418
  • 1412
  • 1420
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Translate to congruences.
Let $N$ be the number of pebbles. Then \[ N \equiv 10 \pmod{32},\qquad N \equiv 18 \pmod{40},\qquad N \equiv 50 \pmod{72}. \] Step 2: Solve the first two congruences (combine mod $32$ and $40$).
Write $N = 10 + 32a$. Impose $N \equiv 18 \pmod{40}$: \[ 10+32a \equiv 18 \ (\bmod\ 40)\ ⇒\ 32a \equiv 8 \ (\bmod\ 40). \] Since $32 \equiv -8\ (\bmod\ 40)$, \[ -8a \equiv 8 \ (\bmod\ 40)\ ⇒\ 8a \equiv 32 \ (\bmod\ 40)\ ⇒\ a \equiv 4 \ (\bmod\ 5). \] Hence $a=4+5t$ and \[ N=10+32(4+5t)=138+160t\ ⇒\ N \equiv 138 \pmod{160}. \] Step 3: Bring in the third congruence (mod $72$).
We need $138+160t \equiv 50 \ (\bmod\ 72)$. Reduce: \[ 138 \equiv 66\ (\bmod\ 72), 160 \equiv 16\ (\bmod\ 72). \] So \[ 66+16t \equiv 50\ (\bmod\ 72)\ ⇒\ 16t \equiv -16 \equiv 56\ (\bmod\ 72). \] Divide by $\gcd(16,72)=8$: \[ 2t \equiv 7\ (\bmod\ 9). \] The inverse of $2$ modulo $9$ is $5$ (since $2 5 \equiv 1$), hence \[ t \equiv 5 7 \equiv 35 \equiv 8\ (\bmod\ 9) ⇒ t=8+9k. \] Step 4: Smallest positive solution.
Take $t=8$: \[ N=138+160 8 = 138+1280 = 1418. \] This satisfies all three congruences and is minimal. \[ \boxed{1418} \]
Was this answer helpful?
0
0