What will be the expression of Kp for the given reaction if the total pressure inside the vessel is P and degree of dissociation of the reactant is α? The reaction: N2O4 (g) ⇌ 2NO2
For N2O4 ⇌ 2NO2, total moles at equilibrium = 1 - α + 2α = 1+α.
Reaction | N2O4 (g) ⇌ 2NO2 | |
Moles at t = 0 | 1 | 0 |
Moles at equilibrium | 1-α | 2α |
Total moles at equilibrium = 1 - α + 2α = 1+α
\(p_{N_2 O_4}=\left(\frac{1-a}{1+a}\right) P ;\)
\(p_{NO_2}=\left(\frac{2a}{1+a}\right)P\)
\(K_{P}=\frac{p_{NO_2}}{p_{N_2O_4}}=\frac{\left(\frac{2a}{1+a}\right)^{2} p^{2}}{\left(\frac{1-a}{1+a}\right)p}\)
\(=\frac{4a^{2}p}{1-a^{2}}\)
The correct option is B.
\(A→2B\) moles
\(K_p = K_n [\frac{P}{n}]^{\Delta ng}\) P⟶ Total pressure, n= Total moles, \(n=1−α+2α=1+α\)
\(K_p = \frac{[nB]^2}{n_A} [\frac{P}{n}]^{2-1}\)
\(K_p = \frac{[2\alpha]^2}{[1-\alpha]} [\frac{P}{1+\alpha}]\)
\(K_p = \frac{4\alpha^2P}{1-\alpha^2}\)
The expression of Kp for the given reaction if the total pressure inside the vessel is P and the degree of dissociation of the reactant is \(\frac{4α^2P}{(1-α^2)}\) for the reaction: N2O4 (g) ⇌ 2NO2