What is the period of the function sin 4x + tan 2x?
Updated On: Sep 4, 2024
$2 \pi $
$\pi$
$\frac{\pi}{2}$
$\frac{3 \pi}{2}$
Hide Solution
Verified By Collegedunia
The Correct Option isC
Solution and Explanation
Period of sin x is $2 \pi $ so, period of
$\sin \, 4x = \frac{2 \pi}{4} = \frac{\pi}{2}$
and period of tan x is $\pi$, so period of
$\tan \, 2x = \frac{\pi}{2}$
So, period of $(\sin \, 4x + \tan \, 2x) $ = LCM of
$\frac{\pi}{2} , \frac{\pi}{2} = \frac{\pi}{2}$