Question:

What is the minimum volume of water required to dissolve 1g of calcium sulfate at 298 K? (For calcium sulfate, Ksp is 9.1 × 10–6).

Updated On: Nov 16, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

CaSO4(s) ↔ Ca2+(aq) + SO2-4(aq)
Ksp = [Ca2+][SO2-4]
Let the solubility of CaSO4 be s.
Then, Ksp = s2 = 9.1 × 10-6 = s2
s = 3.02 × 10-3 mol / L
Molecular mass of CaSO4 = 136 g/mol
Solubility of CaSO4 in gram/L = 3.02 × 10-3 × 136 = 0.41 g/L
This means that we need 1L of water to dissolve 0.41g of CaSO4 Therefore, to dissolve 1g of CaSO4 we require = \(\frac{1}{0.41}\) L = 2.44L of water.

Was this answer helpful?
0
0

Top Questions on Law Of Chemical Equilibrium And Equilibrium Constant

View More Questions

Concepts Used:

Equilibrium Constant

The equilibrium constant may be defined as the ratio between the product of the molar concentrations of the products to that of the product of the molar concentrations of the reactants with each concentration term raised to a power equal to the stoichiometric coefficient in the balanced chemical reaction.

The equilibrium constant at a given temperature is the ratio of the rate constant of forwarding and backward reactions.

Equilibrium Constant Formula:

Kequ = kf/kb = [C]c [D]d/[A]a [B]b = Kc

where Kc, indicates the equilibrium constant measured in moles per litre.

For reactions involving gases: The equilibrium constant formula, in terms of partial pressure will be:

Kequ = kf/kb = [[pC]c [pD]d]/[[pA]a [pB]b] = Kp

Where Kp indicates the equilibrium constant formula in terms of partial pressures.

  • Larger Kc/Kp values indicate higher product formation and higher percentage conversion.
  • Lower Kc/Kp values indicate lower product formation and lower percentage conversion.

Medium Kc/Kp values indicate optimum product formation.

Units of Equilibrium Constant:

The equilibrium constant is the ratio of the concentrations raised to the stoichiometric coefficients. Therefore, the unit of the equilibrium constant = [Mole L-1]△n.

where, ∆n = sum of stoichiometric coefficients of products – a sum of stoichiometric coefficients of reactants.