When the excited electron of an H atom in n= 6 drops to the ground state, the following transitions are possible:
Hence, a total number of (5 + 4 + 3 + 2 + 1) 15 lines will be obtained in the emission spectrum.
The number of spectral lines produced when an electron in the nth level drops down to the ground state is given by \(\frac {n(n - 1)}{2}\).
Given, n= 6
Number of spectral lines = \(\frac {6(6-1)}{2}\) = 15
The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states.
Read More: Atomic Spectra
The Rydberg formula is the mathematical formula to compute the wavelength of light.
\[\frac{1}{\lambda} = RZ^2(\frac{1}{n_1^2}-\frac{1}{n_2^2})\]Where,
R is the Rydberg constant (1.09737*107 m-1)
Z is the atomic number
n is the upper energy level
n’ is the lower energy level
λ is the wavelength of light
Spectral series of single-electron atoms like hydrogen have Z = 1.