Step 1: Understanding the Concept and Formulas:
We have a purely capacitive AC circuit. We need to find the capacitive reactance (\(X_C\)), which is the opposition to the current flow, and then use Ohm's law for AC circuits to find the RMS current (\(I_{\text{rms}}\)).
\begin{itemize}
\item Capacitive Reactance: \(X_C = \frac{1}{2\pi f C}\)
\item RMS Current: \(I_{\text{rms}} = \frac{V_{\text{rms}}}{X_C}\)
\end{itemize}
Step 2: Detailed Explanation:
We are given:
\begin{itemize}
\item Capacitance, \(C = 15 \, \mu\text{F} = 15 \times 10^{-6} \, \text{F}\).
\item RMS Voltage, \(V_{\text{rms}} = 220 \, \text{V}\).
\item Frequency, \(f = 50 \, \text{Hz}\).
\end{itemize}
Part 1: Calculate the Reactance (\(X_C\)) of the circuit
\[ X_C = \frac{1}{2\pi f C} = \frac{1}{2\pi (50)(15 \times 10^{-6})} \]
\[ X_C = \frac{1}{100\pi \times 15 \times 10^{-6}} = \frac{1}{1500\pi \times 10^{-6}} = \frac{10^6}{1500\pi} \]
Using \(\pi \approx 3.14159\):
\[ X_C \approx \frac{1,000,000}{1500 \times 3.14159} \approx \frac{1,000,000}{4712.385} \approx 212.2 \, \Omega \]
Part 2: Calculate the RMS value of AC current (\(I_{\text{rms}}\))
\[ I_{\text{rms}} = \frac{V_{\text{rms}}}{X_C} = \frac{220 \, \text{V}}{212.2 \, \Omega} \]
\[ I_{\text{rms}} \approx 1.037 \, \text{A} \]
Step 3: Final Answer:
The reactance of the circuit is approximately 212.2 \(\Omega\), and the rms value of the AC current is approximately 1.04 A.
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: