Step 1: Gauss' law states that the total electric flux \( \Phi \) through a closed surface is equal to the charge enclosed divided by the permittivity of free space:
\[
\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}
\]
Step 2: Consider a point charge \( q \) at the center of a spherical surface of radius \( r \):
\[
E \cdot 4 \pi r^2 = \frac{q}{\varepsilon_0}
\]
Step 3: Solving for the electric field:
\[
E = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2}
\]
\[
\boxed{E = \frac{1}{4 \pi \varepsilon_0} \cdot \frac{q}{r^2}}
\]