The formula for drawdown \( s \) at a fully penetrating well under steady-state conditions is given by the Theis equation:
\[
s = \frac{Q}{4 \pi T} \ln\left(\frac{r}{r_0}\right),
\]
where:
- \( Q \) is the discharge (1200 m$^3$ day$^{-1}$),
- \( T \) is the transmissivity (1000 m$^2$ day$^{-1}$),
- \( r \) is the radius of influence (400 m),
- \( r_0 \) is the well radius (300 mm = 0.3 m).
Substitute the values:
\[
s = \frac{1200}{4 \pi \times 1000} \ln\left(\frac{400}{0.3}\right).
\]
First, calculate the logarithmic term:
\[
\ln\left(\frac{400}{0.3}\right) = \ln(1333.33) \approx 7.2.
\]
Now substitute:
\[
s = \frac{1200}{4 \pi \times 1000} \times 7.2 \approx \frac{1200 \times 7.2}{4 \pi \times 1000} \approx \frac{8640}{12566.37} \approx 0.688 \, \text{m}.
\]
Thus, the drawdown is approximately \(\boxed{0.69} \, \text{m}\).