Step 1: The van’t Hoff equation relating equilibrium constant and temperature is:
\[
\log_{10} K = -\frac{\Delta H^\circ}{2.303\,R}\left(\frac{1}{T}\right) + \text{constant}
\]
Step 2: Hence, the slope of the graph between \(\log_{10} K\) and \(\dfrac{1}{T}\) is:
\[
\text{slope} = -\frac{\Delta H^\circ}{2.303\,R}
\]
Step 3: The straight line is given to be at \(45^\circ\), so:
\[
\text{slope} = \tan 45^\circ = 1
\]
Step 4: Substituting:
\[
1 = -\frac{\Delta H^\circ}{2.303\,R}
\]
\[
\Delta H^\circ = -2.303\,R
\]
Step 5: Using \(R = 1.987\,\text{cal mol}^{-1}\text{K}^{-1}\):
\[
\Delta H^\circ = -2.303 \times 1.987 \approx -4.606\,\text{cal}
\]