The unilateral Z-transform of \(x(n)\) is \(X_U(z) = \sum_{n=0}^{\infty} x(n)z^{-n}\).
The bilateral Z-transform of a sequence \(g(n)\) is \(G_B(z) = \sum_{n=-\infty}^{\infty} g(n)z^{-n}\).
If we let \(g(n) = x(n)u(n)\), where \(u(n)\) is the unit step function (\(u(n)=1\) for \(n \ge 0\), and \(u(n)=0\) for \(n<0\)), then:
\(G_B(z) = \sum_{n=-\infty}^{\infty} x(n)u(n)z^{-n} = \sum_{n=0}^{\infty} x(n)(1)z^{-n} = \sum_{n=0}^{\infty} x(n)z^{-n}\).
This is identical to \(X_U(z)\).
Thus, the unilateral Z-transform of \(x(n)\) is equivalent to the bilateral Z-transform of \(x(n)u(n)\).
\[ \boxed{x(n) u(n)} \]