The unilateral Z-transform of \(x(n)\) is \(X_U(z) = \sum_{n=0}^{\infty} x(n)z^{-n}\).
The bilateral Z-transform of a sequence \(g(n)\) is \(G_B(z) = \sum_{n=-\infty}^{\infty} g(n)z^{-n}\).
If we let \(g(n) = x(n)u(n)\), where \(u(n)\) is the unit step function (\(u(n)=1\) for \(n \ge 0\), and \(u(n)=0\) for \(n<0\)), then:
\(G_B(z) = \sum_{n=-\infty}^{\infty} x(n)u(n)z^{-n} = \sum_{n=0}^{\infty} x(n)(1)z^{-n} = \sum_{n=0}^{\infty} x(n)z^{-n}\).
This is identical to \(X_U(z)\).
Thus, the unilateral Z-transform of \(x(n)\) is equivalent to the bilateral Z-transform of \(x(n)u(n)\).
\[ \boxed{x(n) u(n)} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |